LTL

Linear Time Temporal Logic
Kripke Structure

- $K = \langle S, R, L \rangle$

 S: set of states (may be infinite)

 R: transition relation between states

 $R \subseteq S \times S$

 L: map from states to sets of propositional symbols

 $L(s)$ denotes the set of propositional symbols that hold at state $s \in S$
Kripke Structure

- $K = \langle S, R, L \rangle$
- $G = \langle S, R \rangle$

directed graph
Kripke Structure

• $K = \langle S, R, L \rangle$
• $L : S \rightarrow 2^{\text{Atom}}$

\text{Atom} : the set of all prop. sym.

\text{Atom} = \{P, Q\}
Infinite Sequence of States --- Execution Path

- \(\pi = \pi_0, \pi_1, \pi_2, \ldots \)
 \[\pi_i \in S \quad (\forall i \geq 0) \]
 \[R(\pi_i, \pi_{i+1}) \quad (\forall i \geq 0) \]

- suffix
 \[\pi^i = \pi_i, \pi_{i+1}, \pi_{i+2}, \ldots \]
 Often denoted by \(s_i \)

\((\pi_i, \pi_{i+1}) \in R \)
Formula

\(\varphi, \psi ::= P \quad \text{prop. symbol} \)

\(\neg \varphi \)	negation
\(\varphi \land \psi \)	conjunction
\(\varphi \lor \psi \)	disjunction
\(\bigcirc \varphi \)	\((X\varphi) \)
\(\Box \varphi \)	\((G\varphi) \)
\(\Diamond \varphi \)	\((F\varphi) \)

\(\text{until is not considered here} \)
Semantics

\[\pi \models P \iff P \in L(\pi_0) \]
\[\pi \models \neg \phi \iff \text{not } \pi \models \phi \]
\[\pi \models \phi \land \psi \iff \pi \models \phi \text{ and } \pi \models \psi \]
\[\pi \models \phi \lor \psi \iff \pi \models \phi \text{ or } \pi \models \psi \]
\[\pi \models \Diamond \phi \iff \pi^i \models \phi \text{ for some } i \geq 0 \]
\[\pi \models \Box \phi \iff \pi^i \models \phi \text{ for any } i \geq 0 \]

\[\phi \text{ holds in } \pi \]
\[\pi \models \phi \text{ --- } \pi \text{ is a model of } \phi \]

The semantics of \(\Box \) and \(\Diamond \) is different from that of CTL.
$\pi \models \bigcirc \Box P$

$\pi^1 \models \Box P$

$\pi \models \bigcirc \Box P$

$P \land Q$

$\Diamond (P \land Q)$

$\bigcirc (P \land Q)$

$\Diamond (P \land Q) \land \bigcirc \Box P$
Which formula holds in this path?

1. □P
2. □¬P
3. ◇(P∧Q)
4. ◇(P∧¬Q)
Does $\Diamond \Box Q$ hold?

1. Yes
2. No
Does $\lozenge \square P$ hold?

1. Yes
2. No
Does $\Box \Diamond P$ hold?

1. Yes
2. No
\[
\Box \Diamond P
\]

- \(\pi \models \Box \Diamond P \) implies \(\pi \models \Diamond P \), so there exists \(i \) such that \(\pi^i \models P \)
- \(\pi \models \Box \Diamond P \) implies \(\pi^{i+1} \models \Diamond P \), so there exists \(j > i \) such that \(\pi^j \models P \)
- Consequently, there exist an infinite number of \(i \) such that \(\pi^i \models P \)
- Conversely, if there exist an infinite number of \(i \) such that \(\pi^i \models P \), then \(\pi \models \Box \Diamond P \) holds
Expressing Fairness

• Let E denote that a certain process is executable, and let R denote that the process is executed next

• Unconditional fairness
 \[\Box \Diamond R \]

• Weak fairness
 \[\Box \Diamond (\neg E \lor R) \]
 \[\Box \Diamond (E \supset R) \]

• Strong fairness
 \[\neg \Box \Diamond E \lor \Box \Diamond R \]
 \[\Box \Diamond E \supset \Box \Diamond R \]

Consider their negation
Model Checking in LTL

• Given a formula φ_0, a Kripke structure K, and its initial state s, does there exist a path π starting from s such that $\pi \models \varphi_0$?
 – If you want to verify that φ_0 holds w.r.t. any path π starting from s in K, then you should negate φ_0 and solve the model checking problem on $\neg \varphi_0$
Example: $\square(P \supset \Diamond B)$

• Negate it: $\Diamond (P \land \square \neg B)$
 – Check negation!

• Does there exist a path π starting from s such that $\pi \models \Diamond (P \land \square \neg B)$?

• If there is no such path from s, then $\pi \models \square (P \supset \Diamond B)$ holds for any path π from s

• Write $\neg B$ as Q and consider $\Diamond (P \land \square Q)$
\(\Diamond (P \land \Box Q) \)

- Does there exist a path \(\pi \) starting from \(s \) such that \(\pi \models \Diamond (P \land \Box Q) \) ?
In the case of a finite Kripke structure
\(\Diamond (P \land \Box Q) \)

- Does there exist a path \(\pi \) starting from \(s \) such that \(\pi \models \Diamond (P \land \Box Q) \) ?

Equivalent to

- Do there exist a state \(e \) that is reachable from \(s \) such that \(P \in L(e) \), and a path \(\pi \) starting from \(e \) such that \(\pi_i = \pi_j \) for some \(i > 0 \) and \(j > i \), and \(Q \in L(\pi_k) \) for all \(k < j \) ?
Under (Unconditional) Fairness

- Paths should contain execution of each process infinitely often
Each process is executed infinitely often.
Each process is executed at least once in the loop.

In the case of a finite Kripke structure.
Another Approach

- $K = \langle S, R, L \rangle$
- Let K' be $\langle S', R', L' \rangle$
 - $S' = \{0\} \times S \cup \{1\} \times (\{s \in S \mid Q \in L(s)\})$
 - $R' = \{((0,s),(0,s')) \mid (s,s') \in R\} \cup \{((0,s),(1,e)) \mid (s,e) \in R, P \in L(e), Q \in L(e)\} \cup \{((1,s),(1,s')) \mid (s,s') \in R, Q \in L(s), Q \in L(s')\}$
 - $L'((0,s)) = L(s)$
 - $L'((1,s)) = L(s)$
\(\Diamond (P \land \Box Q)\) again

- Does there exist a path \(\pi\) in \(K\) starting from \(s\) such that \(\pi \models \Diamond (P \land \Box Q)\) ?

Equivalent to

- Does there exist an path in \(K'\) starting from \((0, s)\) that visits states of the form \((1, s')\) infinitely often?
Start here

Eventually reach here
General Strategy

• Given φ_0, construct a state transition system (called ω-automaton) that characterizes φ_0

• Make the synchronous product of K and the ω-automaton
 – This corresponds to K'

• Check whether a certain kind of loop exists in the synchronous product

• Refer to the slides for the last year
until

\(\pi \models \varphi \text{ until } \psi \)

iff \(\pi^i \models \psi \) for some \(i \geq 0 \)

and

\(\pi^j \models \varphi \) for any \(j < i \)
SPIN

- One of the most popular model checkers
- The target system is described in Promela, a CSP-like concurrent language
- The property is defined in LTL and translated into a NEVER clause of Promela
- The synchronous product is verified
- Applied to verify protocols, algorithms, (software) designs, etc.

http://spinroot.com/spin/whatispin.html