Basics of Model Checking

Modal Logic

Kripke Structure

e K=(S, R, L)

S: set of states (may be Infinite)

R: transition relation between states
Rc SXS iy

propositional symbols

L: map from states to sets of prop. symbols
L(s) denotes the set of prop. symbols
that hold at state seS

Kripke Structure

e K=(S,R, L)

e G=(S,R)
directed graph

-/

Kripke Structure

e K=(S,R, L)

o L : S»2Atm
Atom : the set of all

prop. sym.

P

Atom = {P, Q}

Various Kripke Structures

e Tree
e Forest
e Infinite tree

P, Y

Modal Formula

prop. symbols
negation
conjunction
disjunction
necessity
possibility

nw o n n n un um

=P

= =
= DAY Iff S|:(P and S|:\|]

- vy

¢

= 0

Semantics

iff P e L(s)
Iff not s|=o

iff t
iff t

iff sj=¢ or s|=vy

= ¢ foranyt s.t. R(s, t)
= forsomet s.t. R(s, t)

O is equivalent to —

Semantics

Which holds at % ?

Which holds at % ?

Does JQ hold at % ?

1. Yes
2. NO

Various Modal Logics

So far Is the minimal modal logic K
Restricting the transition relation

— Reflective T / Transitive K4

Allowing recursive propositions

— Computation Tree Logic / Modal p-calculus
Multiple modalities / Operators on modalities
— Boolean logic / Dynamic logic

Interpreting formulas on a path over a graph
— Linear-time temporal logic

Restricting graphs to trees

Satisfiability & Finite-model Property

* Modal formula ¢ Is satisfiable

— If and only If there exists a Kripke structure K
and its state s such that s |= ¢ under K

— K'Is said to be a model of ¢

 In the minimal logic, any satisfiable formula
has a finite model

 Moreover, It has a finite tree model

Tree-model Property of Modal Logic

 In general, expanding a Kripike structure
(graph) at some node s yields an (infinite) tree

e |f a formula is satisfiable at s, then 1t 1s also
satisfiable at the room of the tree

CTL

Computation Tree Logic

A Kkind of branching-time temporal logic

0,y
AG@ globally on any path

AF@ finally on any path
EGe globally on some path

EFo finally on some path

is written AX, and < is written EX

About Paths

CTL usually treats infinite execution paths
Dead-end states complicate the situation

So, each state I1s assumed to have at least
one successor

For example, a self-loop Is added to a final
State

Semantics

s|=AGe Iff
any state t that Is reachable from s satisfies
t=o

S|=AF¢p Iff
on any path starting from s, there exists a
state t such that t |= ¢

Which holds at % ?

1. AGP
2. AG —P
3. AFQ
4. AF —Q

P
| Q

P, Q 5 0

Semantics

S|=EFoe Iff
there exists a state t that is reachable from s
such thatt |= ¢

s|I=EGe Iff
there exists a path starting from s such that
any state t on the path satisfiest|= ¢

B~ w e

Which holds at % ?

EF (PA—Q)
EF AG P
EGQ

EG —Q

P
| Q

P, Q 5 0

Does AF AG Q hold at %?

1. Yes
2. NO

P
| Q

P N BN P.Q P, Q

Computation of State Sets

» Global model checking
* Let[[e]]={seS|s|= 0}
— [[PII ={seS | PeL(s) }
= [[=o]l =S - [le]]
= [loay]] = [lo]] N [Iw]]
= llovvl] = [lo]] © [v]]
— [[Oe]] ={seS |foranyteS,

If R(s,t) then te[[p]] }
— [[Oe]] = { seS | there exists teS such that

R(s,t) and te[[o]] }

Computation of State Sets

« Computation of [[EF¢]]

X =0

loop
Y =[lo]] v

{ seS |there exists teS s.t. R(s,t) and teX }

If Y==X then break
X=Y

end

e Computing the minimal X such that X = f(X),
where f(X) denotes the R.H.S. of Y .=

EF P

EF P

EF P

Computation of State Sets

e Computation of [[EGe]]

X:=95

loop
Y =[le]] N

{ seS |there exists teS s.t. R(s,t) and te X }

If Y==X then break
X=Y

end

e Computing the maximal X such that X = f(X),
where f(X) denotes the R.H.S. of Y ;=

Computation of State Sets

« Computation of [[AGo]]

X:=3S

loop
Y =[lol] M

{seS |foranytes, if R(s,t) thenteX }

If Y==X then break
X:=Y

end

e Computing the maximal X such that X = f(X),
where f(X) denotes the R.H.S. of Y ;=

Computation of State Sets

e Computation of [[AFeo]]

X =0

loop
Y =[lo]] v

{seS |foranyteS, if R(s,t) thenteX }

If Y==X then break
X:=Y

end

e Computing the minimal X such that X = f(X),
where f(X) denotes the R.H.S. of Y .=

Summary

* [[EFe]] = [[o v OEF0])
— minimal

* [[EGo]]l=[[¢ A CEGo]]
— maximal

* [[AGe]] =[[o A LUAGe]]
— maximal

* [[AFo]]l =[[e v UAFe]]
— minimal

Summary

* [[EFe]] = [[o v OEF0])
— minimal

* [[EGe]]l=[[¢ A OEGo]]

— maximal

* [[AGe]] = [[¢ n OAGe]]

— maximal

* [[AFo]]l =[[e v UAFe]]
— minimal

Summary

* [[EFe]l =[[¢ v OEFe]]
— minimal

* [[EGo]l]l=[[¢ A CEGo]]
— maximal

* [[AGe]] =[[o A LIAGe]]
— maximal

* [[AFo]]l=[[e v LIAFe]]
— minimal

Modal p-calculus

Inductive definitions on propositional var.
X =pvOX
— Minimal fixed point or maximal fixed point?
In the case of a minimal fixed point
uX. v<>X --- coincides with EF¢
In the case of a maximal fixed point
true everywhere
Example of a maximal fixed point

vX. PA

X --- coincides with AGo

X NS,k

Which denotes AF¢?

uX. @A X
uX. epv<OX
vX. pAOX
vX. pvOX

uX. OA
uX. ev
vX. OA

vX. OV

X

X
X
X

Symbolic Model Checking and
BDD

Representation of States

 States are often represented by bit vectors

Example: Peterson’s Algorithm

. flags[me] = true;

. turn = you;

. If (flags[you] != true) goto 4,

. 1f (turn !'=you) goto 4; else goto 2;
. critical section;

. flags[me] = false; Each pc can be

. either goto 6 or goto 0; represented by
three bits

o O b WO N B O

o state:(pcO, pcl, flags[O]lfiags[1], turn)
pcO, pcl: 0..6
flags[0], flags[1]: {true, false}

turn: 10, 1} These are already bits

Representation of States

States are often represented by bit vectors
So, the set S of states Is (a subset of) {0,1}"

Each state Is regarded as an assignment
mapping n boolean variables x,, ..., X, t0
Oorl

In the case of Peterson’s algorithm
— pc00, pcO01, pc02 --- pcO

— pcl0, pcll, pcl2 --- pcl

— flags0, flags1 --- flags[O], flags[1]

— turn

Representation of State Sets

A set of states can be represented by a
boolean formula over xy, ..., X

oy X
For example, x;,A—X, represents the set of
states of the form (1, O, ...)e{0,1}"

Remember that [[¢]] denotes a set of states
definedas {seS|s|=¢ }

So, [[@]] Is represented by a boolean
formula over xy, ..., X

For example
— pc0=4 --- pcO0OA—pcO1A—pcO2

n

Representation of Transitions

* The transition relation R Is represented
by a boolean formula over x,, ..., X,
and X'y, ..., X',

— Xy, ..., X, --- State before transition
-X'y, ..., X', --- state after transition

 The formula 1s denoted as
R(Xq,y oovy Xoy X'y veey XIp)

R(pc00,pc01,pc02, pcl0,pcll,pcl2,flagsO,flagsl,turn,
pc00’,pc01’,pc02’, pcl0’,pcll’,pcl?’,
flagsO’,flagsl’,turn’) = v
—pc00ApcOIlA—pcO2A—flagsin
PcO0’ A—pc01’'A—pc02'A
(pcl0=pcl0)A(pcll=pcll’)A(pcl2=pcl2")A
(flagsO=flags0’)A(flagsl=flagsl’)A (turn=turn’)

V2 0: flags[me] = true;

1: turn = you;

2: 1f (flags[you] !'= true) goto 4;

3:if (turn '=you) goto 4; else goto 2;
4: critical section;

5: flags[me] = false;
6: either goto 6 or goto O;

Which Is true?

. R(0,1,0,0,1,0,1,1,1,0,1,0,1,0,0,1,1,1)
. R(0,1,0,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1)
. R(0,1,0,0,1,0,1,1,1,1,0,0,0,1,0,1,1,1)

Semantics of Propositional Symbols

o L :S—2Atm

e |t suffices to define

[[PI] ={s|PeL(s) }
for each Pe Atom

e Since {s|PeL(s) } Is a state set, It can
be defined by a formula P(x,, ..., X,)

OVEF Xq, ..., X,

Summing Up...

= (S, R, L) (Krpike structure)
-S5={0,1}"
— R 1s represented by a boolean formula
R(Xqy «oey Xy X' gy oeey X))
— L : S—2Am js defined in terms of
P(Xy, -0 Xp)
that represents
[[P]]={s|PeL(s) } foreach P

Computation of State Sets

« Computation of [[EFo]]
X =0 a

loop Now a boolean formD
Y = [[o]] U OVEer Xy, ..., X,

{ seS | there exists teS s.t. R(s,t) and te X }

if Y==X then break
X:=Y

end

e Computing the minimal X such that X = f(X),
where f(X) denotes the R.H.S. of Y .=

Computation of State Sets

o Computation of [[EFe]](Xy, ..., X,)

X(Xq, ..., X,) ;= false .
(% 0 Z__ Begins with falD

loop

Yo, oo Xo) = [[@11(Xy, .., %) v =< Disjunction >

{ seS |thereexiststeS s.t. R(s,t) and te X }
If Y==X then break

X=Y
end Equality between
boolean formulas

Quantified Boolean Formulas

e Quantifiers are allowed in boolean formulas
Ixt = |, oVl
Vxt =t o ATl
e {seS |thereexiststeSs.t. R(s,t)andteX }
IS represented by

X' 33X (RO ey Xy Xy ey X

XXy, s X))

) A

X((—=XAY)v(XA—=2Z)) IS equivalent t0?

—XAY
XA—Z
YA—Z
Vv —Z
X

—X

y

—Z

© No gk W

Computation of State Sets

o Computation of [[EFe]](Xy, ..., X,)
X(Xq, ..., X,) = false
loop
Y(Xq, ooy X)) = [[0]](Xqy oeey X)) V
A 3X (R(X, ey Xy Xy vy X

X(X'yy ooy X))

n) A

If Y==X then break
X=Y
end

OBDD

» Ordered Binary Decision Diagram

— Acyclic graph whose nodes are boolean
variables

— Each branch from a node represents
“If variable then ... else ...”

— Variables are ordered

— Sub-graphs can be shared

o Compact representation and efficient
computation of boolean formulas

If x; then
If x, then
If X, then true else false
If X5 then false else true
else
If X5 then false else true

equivalent to

(X; A (X9 A Xg) V (=X, A —=X3)) V
(—|X1 VAN ﬂX3)

Advantages of OBDD

 Equivalent formulas are represented by a
unique OBDD (with a fixed order of
variables)

« Operations on boolean formulas, including
guantification, can be implemented as
manipulations of OBDD

— Quite efficient in general, but

— Efficiency of operations (in particular,
quantification) greatly depends on the order of
variables

SMV

Symbolic Model Checker

Originally developed for hardware
verification

Currently applied to various systems
Including software, protocols, etc.

NuSMV is a reimplementation and
extension of SMV

http://nusmv.fbk.eu/�
http://nusmv.fbk.eu/�

LTL

Linear-time Temporal Logic

* Formulas are interpreted with respect to a
path on a Kripke structure

* The concept of a path partially appears in

CTL

S|=EGe Iff
there exists a path starting from s such that
any state t on the path satisfies t |= ¢

e ButinC
state

L formulas are interpreted at each

Kripke Structure

e K=(S, R, L)
S: set of states (may be Infinite)
R: transition relation between states
Rc SXS
L: map from states to sets of prop. symbols
L(s) denotes the set of prop. symbols
that hold at state seS

Infinite Sequence of States ---
Execution Path

" ol Often
T € S (ViZO) denoted

R(r;, m.,,) (Vi>0) S
o suffix

TC' :Tci,TCH_l,TCH_Z’ . nm

Formula

prop. symbol
negation
cojunction
disjunction
(Xop)

(G(P> until 1s not
(F(P) considered

here

Semantics

=P Iff P e L(ny)

== Iff not m|=0

oAy Iff wl=¢ and n|= vy

— - _ _ The semantics

=ovy Iff mlFoor ntlFy o0

= Qo iff wt|=0 different from
: . _ that of CTL

=L Iff =#'|=¢ foranyi>0

=0 iff nf|=¢ for some i>0

4 348 4 8 da 3 4

¢ holds In &
T |[=¢ --- wisamodel of ¢

Which formula holds in this path?

1. P
2- _|P
3. O(PAQ)

4, O(PA—-Q)

Does <& OQ hold?

1. Yes
2. NO

Does <P hold?

1. Yes
2. NO

Does (J<P hold?

1. Yes
2. NO

[JOP

n |= OOP implies ©t |= OP,

so there exists i such that n' |= P

n [FO<OP implies ©*t |= OP,

so there exists j>i such that ! |= P

Consequently, there exist an infinite number
of i such that ' |= P

Conversely, If there exist an infinite number
of i such that «' |= P, then n |= CO<P holds

Expressing Fairness

et E denote that a certain process Is
executable, and let R denote that the process

has been executed
Unconditional fairness

OR
Weak fairness
O(—E Vv R) O(E>R)
Strong fairness
-OCEvOCOR CE-OCOR

Consider their negation

[1 and & and —

Oo iff nl= O—o

Model Checking in LTL

* Given a formula @,, a Kripke structure K,
and its Initial state s, does there exist a path —>
n starting from S such that & |= ¢,?

— If you want to verify that ¢, holds w.r.t. any
path 7 starting from s, then you should negate
¢y and solve the model checking problem on

— Qg
 NotsoeasyasinCTL

— It Is necessary to characterize paths that satisfy
the given formula ¢

— Use m-automata

Working Example

* In the following, the formula [J(a > <b) is
used as a working example

 Itis a typical formula expressing liveness
— If a file Is opened, it is eventually closed

Formula (Negation Normal Form)
o,y = P

For any formula,
O() there exists an equivalent
normal form

Which is the normal form equivalent

(an O=b)
(av O=b)
. O(aA O-b)
. O(av O-b)
(—a A Ob)
(—a v <b)
O(—a A Ob)
O(—a v Ob)

© N Lk W N

n |= O
n |= e

[1and & and O

Iff
Iff m

= pAO 0
= pvO O

cl(py): the closure of @,

The minimum set of formulas satisfying

* @yecl(qg)
o If o,Ap,eCl(y), then ¢, ecl(p,) and ¢, e cl(p,)
o If o,vo,ecl(p,y), then ¢, ecl(p,) and ¢, e cl(p,)
o If Opecl(py), then pecl(p,)

« If Ogecl(g,), then pAOOgeecl (@)
o If Oopecl(ey), then pvOOpecl(gy)

* The condition “If —Pecl(g,), then Pecl(p,)” 1S
not required

« @y =<(an O-b)
* cl(@p) :

O(a /\ _Ib)
(aA O-b) v Oan

a A _Ib

O O(aA O-b)
d

—b
—b A O0O-b

O 5

—b

Po-type

['ccl(oy)
If ,A@p,€l’, then ¢, €I" and ¢, eI’

If ¢,vo,el’, then ¢, €l" or ¢, el

It 1S not the case that PeI” and —PeI
If Ooel’, then pAO el

If Ooel’, then ovO el

Selection of ¢,-types and
Transitions between ¢,-types

» Select all the minimal ¢ -types that
contain @,

o If a @y-type I'ccl(p,) Is selected, select
all the minimal @,-types I'’ that contain

{pecl(py) | Opel'}
e Define atransition " > I

* Repeat the above process

N

O(a VAN D—|b)

e [0
O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

N
O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

a N _Ib

O(an O=b)
(a. VAN Dﬁb) \V4 OO(a VAN Dﬁb)

O<>(a AN _Ib)

O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

a N _Ib
d

—b

O(an O=b)
(a. VAN Dﬁb) \V4 OO(a VAN Dﬁb)

O (a A O-b)

O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

a N _Ib
d

—b
—|D/\O —|b

O(an O=b)
(a. VAN Dﬁb) \V4 OO(a VAN Dﬁb)

O (a A O-b)

O(an O-b)

O(a VAN D—|b)

(@ O—=b) v OO(a A O-b)

a N _Ib
d

—b

—|D/\O

—0

O0O-b

(a. VAN Dﬁb) \4 OO(a A\ Dﬁb)

O O@n

_b)

—b

Which Is In a successor of " | ?

e I';:

O(a VAN D—|b)

(a VAN I:l—|b) V O<>(a VAN D—|b)

a AN _Ib

a

—b

L

oA O

—b
OLl-b

—b

adi A

a A _Ib

Oan

—b)

O(an O-b)

O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

a N
a

—b

—b

—|D/\O —|b

—0

O

(a. VAN Dﬁb) \4 OO(a A\ Dﬁb)

O O@n

_b)

e [
—b =

—b

O(an O-b)

O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

a N
a

—b

—b

—|D/\O —|b

—0

O

(a. VAN Dﬁb) \4 OO(a A\ Dﬁb)

O O@n

_b)

—b
—|O/\O

—b

O(an O-b)

O O@n

O(a/\ D—|b)
(@ O—=b) v OO(a A O-b)

a N _Ib

a

—b

L

L

oA O

0

O0O-b

(a. VAN Dﬁb) \4 OO(a A\ Dﬁb)

_b)

—b

e Iy

—b

|

|

A O

OO-b

—b

©@ N Ok bR

What are successors of 1 ?

none

I anc
I anc
I anc

and

and

|

O(an O-b)

(a VAN I:l—|b) Vv OO(a VAN D—|b)

an [-b

a

O-b

—b A OO-b
—b

OO-b

O—b
—bAOO-b
—b

O0O-b

©@ N Ok bR

What are successors of II ?

none

I anc
I anc
I anc

and

and

|

O(an O-b)

(a VAN I:l—|b) Vv OO(a VAN D—|b)

an [-b

a

O-b

—b A OO-b
—b

OO-b

O—b
—bAOO-b
—b

O0O-b

©@ N Ok bR

What are successors of III?

none

I anc
I anc
I anc

and

and

|

O(an O-b)

(a VAN I:l—|b) Vv OO(a VAN D—|b)

an [-b

a

O-b

—b A OO-b
—b

OO-b

O—b
—bAOO-b
—b

O0O-b

O(an O-b)

(aA O=b) v OO(a A O-b)
an=b

a

1-b

—b A OO-b

—b

OO-b

O(an O-b) I :
(@A O=b) v OO(a A O-b) O—b
OO(a/\ D_lb) —b A OI:I—|b

O0O-b

O(an O-b)

(aA O=b) v OO(a A O-b)
an=b

a

1-b

—b A OO-b

—b

OO-b

II :

O(an O-b) :
C(a A O—=b) v OP(a A O-b) C—b
OO(a/\ D_lb) —b A Ol:l—|b

O0O-b

O(an O-b)

(aA O=b) v OO(a A O-b)
an=b

a

1-b

—b A OO-b

—b

O0O-b

" OanO-b) II :
O<>(a/\ Dﬁb) —b A OD—|b

O0O-b

Making a “Symbolic” Model

o If n=ny,mn,,7,,... IS a model of @, then

there exists an infinite sequence
[I=0,1,T,, ...

of ¢y-types such that

* @oely

o 1!'|=¢ forany gpel;

* Ii=>1

» If Ooeely, then gel; for some j=i

Conversely ...

* If an infinite sequence I'l=I",,I";,I,,... Of
Po-types I'; < cl(g,) satisfies the above
conditions and the following, then ' |= ¢
for any eI’ (in particular, &t |= @)

o If Pel';, then PeL(m;)

o If —-Pel’;, then PeL(x;) does not hold

w-automaton

* |n order to characterize an infinite
seqguence that satisfies the above
conditions, construct an m-automaton
whose states are ¢,-types I'ccl(o,)

e |ts transitions are defined by I' —> I"”
o Initial states I'y satisfy ¢yl

O(an O-b)

(aA O=b) v OO(a A O-b)
an=b

a

1-b

—b A OO-b

—b

O0O-b

" OanO-b) II :
O<>(a/\ Dﬁb) —b A OD—|b

O0O-b

O(a VAN I:]—|b)

II :

Labels

e In order to check the following
conditions, propositional symbols and
their negations are put as labels to
states (@,-types)

o If Pel;, then Pel(m;)
o If —-Pel’;, then PeL(x;) does not hold

O(an O-b)

(aA O=b) v OO(a A O-b)
an=b

a

1-b

—b A OO-b

—b

O0O-b

" OanO-b) II :
O<>(a/\ Dﬁb) —b A OD—|b

O0O-b

[:
/ﬂb

A\

Condition on Infinite Paths

 \We want to characterize infinite paths
[1=I"y,,I'y,I',,... over the w-automaton
that satisfy the following conditions

If Ooeely, then gel; for some ji
e This is equivalent to

For each Oeecl(py), elements of
F(<o) occur infinite times

 \Where
F(Oo)={T"| OodI' or pel'}

What is F((a A O—b))?

1. none
2. 1

3. 1 ano
4. 1 and
5. I anc
6.

1. and
8. 1I

and

O(an O=b)

(@A O=b) v OO (a A O-b)
an [-b

a

O-b

—b A OO-b

—b

O0O-b

O(an O-b) O-b

(an O=b) v OO(a A O-b) b AOO=b

O<>(a/\ Dﬁb) —b
O0O-b

F(OCo)={l'| Co¢l =& pell} it

O(an O-b)

(aA O=b) v OO(a A O-b)
an=b

a

1-b

—b A OO-b

—b

O0O-b

" OanO-b) II :
O<>(a/\ Dﬁb) —b A OD—|b

O0O-b

O(a VAN I:]ﬁb)

aAn I:Iﬁb

II :

—b
F(O@a O-b))={1, I}

Model Checking

e For a Kripke structure K=(S, R, L),
an Initial state s,eS, and
a formula o,
Is there any model n=ny,n,,m,,...
of ¢, that satisfies w,=S,?

Equivalent to the Following

Is there an Infinite path I'1=I",,I";,I",,...
over the m-automaton such that

e For each Ooecl(g,), elements of
F() oceur infinite times

o |f Pel';, then PelL(m;)

o |f -PeI’;, then PeL(m;) does not
hold

Example

204

a —b

—b

Synchronous Product

* In order to simultaneously check the
existence of « and that of I1, construct the
“synchronous product” of the m-automaton
and K

States: (s,I') where {P|Pel'} < L(s)
{P|-Pel'}nL(s) =

Initial states: (s,, I',) pair of initial states

Transitions: (s, ') > (s, I"") Iff R(s,s’)and I'—> I"

Synchronous Product

hO—"0——Oy Al

a —b

—b

Synchronous Product

hO—"0——Oy Al

O O O
O 0 O O O

a —b

O

—b

Which state does not exist?

a —b

hO—"0——Oy Al

—b

® @ ©
@ @ O O O 0

0% 0% 0% 0% 0%

Synchronous Product

hO—"0——Oy Al

Which transition exists?

a —b

hO—"0——Oy Al

—b

S0 oo

0%

0%

Synchronous Product

>®< >@Q |

Synchronous Product

= e=209 @/D});)

Synchronous Product

e

—b

Condition for Existence of a Model

* There exists a model n=mn,,m,,m,,... Of @,
Iff
There exists an Infinite path
(g, T'g) >, I')) = ...

In the synchronous product such that
for each Oeecl(oy), elements of
F(< o) oceur infinite times

& Existence of a kind of loop

Synchronous Product

= e=209 @/D});)

Synchronous Product

e

—b

Condition on a Loop

e Reachable from an initial state

e For each Ooecl(gy), elements of
F(< o) occur infinite times

 Existence of such a loop can be
decided by checking strongly
connected components in the
synchronous product

Don’t forget
to negate it

Report

* Construct an o-automaton f¢

Oeor) o O(ao <Ob)

 Verify that the formula holds in each
path of the following Kripke structure

S

verifying

Report’

e Construct an m-auto

(

<>e—>

Or) o

il

aton for verifying

(a > <b)

 Verify that the formula holds in each
path of the following Kripke structure

until

n|= ¢ until y
iff ©'|=wy for some i>0
and
™ |= ¢ for any j<i

release

n|= ¢ release y
iff ©'|=¢@ for some i>0
and
m |=y for any j<i
or © |[=y forany]

until and release and —

m |[= = (¢ until y)

Iff n|=— release —y
m |= — (o release y)

Iff 7 |= = until -y

until and release and O

n |= ¢ until vy
Iff n|=wy v O(e until y)
n |= @ release vy
iff mw|=wy A O(p release y)

SPIN

One of the most popular model checkers

The target system Is described in Promela, a
CSP-like concurrent language

The property is defined in LTL and
translated into a NEVER clause of Promela

The synchronous product is verified

Applied to verify protocols, algorithms,
(software) designs, etc.

http://spinroot.com/spin/whatispin.html�

Bounded Model Checking and
SAT/SMT

Bounded Model Checking

If a verified property Is refuted by a finite
prefix of a path or by a path with a simple
loop, then It gives a counter example

Verification with respect to a finite prefix or
a simple loop can be translated into a SAT

problem
SAT solvers are continuously improved
Why not use SAT solvers?

Bounded Paths

O—0O—0—0—0

I A .

(4,1)-loop
4-loop

Bounded Semantics

T |= ¢
If T 1s a k-loop and &t |= ¢, Or
If T |= ¢ can be decided only
by looking at =, w;, ...,
= Eo@ Iff n|= ¢ forsome &
=Eop Iff n|=¢ forsomerw

Theorem
=E¢ Iff |= E@ for some k
Therefore, If ¢ Is the negation

of a verified property, |=, E¢
gives an counter-example

Theorem

=E¢ Iff |= E@ for some k

K can be found In the
range up to |M| x 2l¢l where
IM| 1s the number of states
and || Is the length of ¢

Translation to SAT

m; IS represented by Xi,, ..., X,
n |=, @ IS translated into
a big boolean formula over

Xops «es Xgp s oer Xty «oo1 Xin

Translation for a (k,1)-loop

rl(P, I, 1, K) :== P(Xiy, ..., Xi)
(=P, I, 1, K) := =P(Xy, ..., Xi,)
oAy, I, 1, K) = Trl(o, I, 1, K) A Trl(y, 1, 1, k)
r1(Qo, 1, i, k) := Trl(o, |, succ(i), k)
succ(l) :=1f i==k then | else 1+1

T, 1, i, K) := AX_ i Tr(, 1§, K)

Introduction of New Variables

A new boolean variable iIs introduced for
each subformula and 1

(@arb)v(c— (anb))
U

Xv(c—o>X)AX=(@nah))

Example

Tri(O(a A O=b), 1,0, 4) = (ag A (—by A Y)) v X
x=Trl(OaA O-b), 1,1, 4) =

@ Ay)v@ay)viagay via, Ay
y=Trl(O-b, 1,1, 4) =

_Ibl /\ —|b2 /\ —|b3 VAN —|b4 ; ; ; ;

* Inaddition, (a;, b;, ...) and (a;,, bi,q, -..)
should satisfy the transition relation R

* (ay, by, ...) should be an initial state

SAT (Satisfiability)

e The problem of deciding whether

tr
m

ere exists an assignment that
akes a given boolean formula

tr

UE

—Assignment --- mapping each

boolean variableto O or 1

SAT Solvers

» Please refer to other lectures on algorithms

« DPLL

— Davis, Putnam, Logemann, and Loveland
— Assumes conjunctive normal forms

— To satisfy parest, tentatively chooses one
literal from ¢ and recursively attacks rest ...
while backtracking ...

http://www.satcompetition.org/�

SMT (Satisfiability Modulo Theories)

o Satisfiability under a specific theory (or

combination of t
— See the next slio

 DLPP(T)
— Works as DLPP

neories)

€

while calling the T-solver,

which decides satisfiability of conjunctions, and
validity of implications between conjunctions

http://www.smtcomp.org/�

Examples of Theories

Equality and uninterpreted functions
Peano arithmetic

Linear integer arithmetic with constant
multiplication

Real number arithmetic with multiplication

Rational number arithmetic without
constant multiplication

(Acyclic) recursive types
Arrays

Nelson-Oppen

 Method to handle combinations of theories

 Splita formula with symbols from T, and T,
Into a formula in T, and a formula in T,
(purification)

X<YAY X+ f(X)

U

XSYAYSX+ZAZ=1(X)

Abstract Model Checking and
CEGAR

Abstraction

Abstraction of states > abstract states
A mappingao : S —> A

Usually, A Is much simpler than S

— Typically, A is a finite set while S Is Infinite

Example: alternating bit protocol

— State Is a tuple of
e Sender’s state
* Recelver’s state
e Channels’ states --- infinite < apply abstraction

Alternating Bit Protocol

Sender
Recelver

S_Ch: channel of message packets

— Each packet is a pair of a message and a header
— Modeled as a queue of packets

— Messages may be duplicated or lost

R_Ch: channel of acknowledgements
— Ditto

Alternating Bit Protocol
i

S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

.0 1
T RRGO) gk
R Ch

1

R_msg(m)

Alternating Bit Protocol
i

S Ch

Nex S—MQQ§QW/ ”Fggggbmv

Env Sender Recelver

.0 1
T RRGO) gk
R Ch

1

R_msg(m)

Alternating Bit Protocol
i

S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

.0 1
ST RGO s/l
R Ch

1

R_msg(m)

Alternating Bit Protocol
i

S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d 1
ST RRGO) sk
R Ch

1

R_msg(m)

Alternating Bit Protocol
i

S Ch

ot S_pkt(%)/ Wb,m)

Env Sender Recelver

—— 0d 1
ST RRGO) sk
R Ch

1

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d 1
ST RRGO) gk
R Ch

1

R_msg(m)

Alternating Bit Protocol

[(0,d)] Duplicated!
S Ch

ot S_pkKEJpX’ W%>Q5§0mb

Env Sender Recelver

—— 0d 1
ST RRGO) gk
R Ch

1

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

S_pkt(b, kt(b,m)
Next - (/M/ KK R_msg(d)

Env Sender Recelver

—— 0d 0
ST RRGO) sk
R Ch

1

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d 0
ST RGO) /a0
R Ch

1

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d 0
ST RRGO) gk
R Ch

[] Lost!

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d 0
ST RGO) /a0
R Ch

1

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d v
ST RRGO) gk
R Ch

[0]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

—— 0d v
T RO sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

G | 0
T ReGO) gk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

G | 0
T RGO) /a0
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

G | 0
T ReGO) gk
R Ch

[0]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

G | 0
TEOR SOt
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

G | 0
T ReGO) gk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

Nex S—MQQ§QW/ ”Fggggbmv

Env Sender Recelver

G | 0
T ReGO) gk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

.1 0
IO S0
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d)]
S Ch

ot S_pkt(l}/ Wb,m)

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d),(1,e)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d),(1,e)]
S Ch

ot S_pkt(l}/ wb,m)

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(0,d),(1,e),(1,e)]
S Ch
S _pkt(b, kt(b,m)
Next /W/ KK R msg(m)
Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

Alternating Bit Protocol

[(1,e),(1.e)]
S Ch

ot S_pkKEJpX’ W%>Q5§dib

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(1,e),(1.e)]
S Ch

ot S_pkKEJpX/ W%>Qfgbﬂn)

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(1,e)]
S Ch

ot S_pkKEJpX’ W%>9556JJ

Env Sender Recelver

. 1, 0
STsim " RagO) sk
R Ch

[]

R_msg(m)

Alternating Bit Protocol

[(1,e)]
S Ch

ot S_pkKEJpX’ W%>Q55bﬁn)

Env Sender Recelver

. 1, 1
STsim RagO) sk
R Ch

1

R_msg(e)

Alternating Bit Protocol

S Ch
S pkt(b/m/ wb,m)
Next —
“— R_msg(m)

Env Sender Recelver
S_msg(m) R_%k(b) /5_/ack(b)
R Ch
Sender state: message : None or Some(m)
header : Oorl

trans.: e If message=None then
send Next ; get S _msg(m) ; message := Some(m)
e if message=Some(m) then send S pki(header,m)
e When R_ack(b) is received
If b=nheader then flip header ; message := None

Alternating Bit Protocol

S_Ch
S pkKEJpX/ W%>Qfgbﬂn)
Next —

Env Sender Recelver

T RRGO) g/l
R Ch
Receiver

state: header : Oorl
trans.. e when R_pki(b,m) Is received
If b#header then
send R_msg(m) ; flip header
e send S ack(header)

R_msg(m)

Alternating Bit Protocol

S_Ch
S pkKEJpX’ W%>Q55PJN)
Next —

Env Sender Recelver

S_msg(m) \§yafﬂn //sﬁ;ma»
R Ch

R_msg(m)

S Ch state: queue of messages

trans.. e when S pki(b,m) Is received
enqueue m or ignore m (m is lost)
e if the queue Is not empty
let m be the first message ; send R pkt(b,m)
dequeue m or do not dequeue m (m is duplicated)

Concrete States

e Queues may grow unlimitedly

— An element of a queue may be duplicated
Indefinitely

* The concrete state space Is obviously
Infinite

Abstraction of Channels

* Reducing queues by removing duplicated
elements in a queue

— For example, [d,d,d,d,e,e,e,f] Is reduced to
[d,e,f]

« Accordingly, transitions of channels are

abstracted

Abstract S _Ch
state: reduced queue of messages
trans.. e when IS received
engueue m ; reduce or ignore m (m 1s lost)
e if the queue Is not empty
let m be the first message ; send
dequeue m or do not dequeue m (m is duplicated)

Abstract States

e Queues In channels are reduced

 Even though the abstract state space is still
Infinite In this example,

* Only a finite number of abstract states are
reachable from an initial state

— The length of a reduced queue in a channel is at
most 2

Simulation

e |ftisan abstraction of s and s — s’ then
there exists an abstraction t' of s’ such that
t—1 (fs— s then a(s) — a(s))

Concrete path

So—>S1—>S2— ... & Sn

Abstract path
t

Simulation

e |ftisan abstraction of s and s — s’ then
there exists an abstraction t' of s’ such that
t—1 (fs— s then a(s) — a(s))

Concrete path

So—>S1—>S2— ... & Sn

Abstract path

'[o—>1£1

Simulation

e |ftisan abstraction of s and s — s’ then
there exists an abstraction t' of s’ such that
t—1 (fs— s then a(s) — a(s))

Concrete path

So—>S1—>S2— ... & Sn

Abstract path

to—>f1—>{2—>...—>tn

Abstract Model Checking

o |f a property holds in any abstract path, then
the corresponding property holds in any
concrete path

e Example

— After a transition by S_msg(m), If there exists a
transition by R_msg(m’), then m=m’

Alternating Bit Protocol

S_Ch
S pkKEJpX/ W%>Qfgbﬂn)
Next —

Env Sender Recelver

S_msg(m) ‘?ﬁﬁgfﬂv //gﬁ;man
R Ch

R_msg(m)

vQ

After a transition by S_msg(m), if there exists a transition by
R_msg(m’), then m=m’

(This property is expressed by a virtual queue (VQ) that stores
S_msg(m) and compares it with R_msg(m’))

Microsoft Static Driver Verifier (SDV)

 Hostile model of the driver’s execution
environment

— Harness code simulates the operating system
Initializing and invoking the device driver

— Stub code provides the semantics for the kernel
APIs

e SLAM Tookit
— CEGAR

o API usage rules (properties)
— About 60

SLAM Toolkit

« Safety verification of system software

— Target: Device drivers for Windows with well
defined interface

e Three phases

— C2BP: tool for translating (abstracting) C
programs to Boolean programs, using
predicates in specifications (APl usage rules)

— BEBOP: model checker for Boolean programs

— NEWTON: : tool that analyzes error paths
produced by the model checker, and discovers
predicates for refining Boolean programs

CEGAR

Counter
Example-
Guided
Abstraction
Refinement

state {

enum { Unlocked=0, Locked=1 }
state = Unlocked;

KeAcquireSpinLock.return {
iIT (state == Locked)

abort; SLIC SPEC.
I [-

" etate = Locked:- Specification
¥ Language for
KeReleaseSpinLock.return { Interface

IT (state == Unlocked)]

abort; Checking
else

state = Unlocked;

enum { Unlocked=0, Locked=1 }
state = Unlocked;

void slic abort() {
SLIC_ERROR: ;

}

void KeAcquireSpinLock return {
iIT (state == Locked)
slic _abort();
else
state = Locked;

}

voild KeReleaseSpinLock return {
IT (state == Unlocked)
slic _abort();
else
state = Unlocked;

C program
obtained by
compiling
SLIC spec.

void example() {
do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

req = devExt->WLHV;

i1T(reqg && reg->status) {
devExt->WLHV = reqg->Next;
KeReleaseSpinLock();

Irp = reqg->irp;
1f(reg->status > 0){
irp->loS.Status = SUCCESS;
irp->loS.Info = reg->Status;
} else {
iIrp->loS.Status = FAIL;
irp->loS.Info = reg->Status;
+
SmartDevFreeBlock(req);
loCompleteRequest(irp);

nPackets++;
}
} while(nPackets!=nPacketsOld);
KeReleaseSpinLock();

}

Code for a
device
driver

void example() {
do {
KeAcquireSpinLock();
A:KeAcquireSpinLock return();
nPacketsOld = nPackets;
req = devExt->WLHV;
i1T(reqg && reg->status) {
devExt->WLHV = reqg->Next;
KeReleaseSpinLock();

B: KeReleaseSpinLock return();
Irp = reqg->irp;
iIf(reg->status > 0){

irp->loS.Status = SUCCESS;

irp->loS.Info = reg->Status;

} else {
iIrp->1o0S.Status = FAIL;

}
SmartDevFreeBlock(req);

loCompleteRequest(irp);

irp->loS.Info = reg->Status;

nPackets++;
}
} while(nPackets!=nPacketsOld);
KeReleaseSpinLock();

C:KeReleaseSpinLock return();

}

Device driver
code with
Inserted checks
for specification

decl {state==Locked}, {state==Unlocked};

void stz egin -——<skip; end
Boolean var. Boolean var.
voild KeAcqurrespinLock return

begin
1T ({state==Locked})
slic _abort();
else
{state==Locked},{state==Unlocked} := T,F;
begin

voild KeReleaseSpinLock return
begin
iIT ({state==Unlocked})
slic _abort();
else
{state==Locked},{state==Unlocked} := F,T;
end

Boolean program obtained from SLIC spec.

decl bL, bU;
void slic_abort() begin SLIC ERROR: skip; end

void KeAcquireSpinLock return

begin
1t (bL)
slic_abort();
else
bL,bU = T,F;
begin
voild KeReleaseSpinLock return
begin
1t (bU)
slic _abort();
else
bL,bU = F,T;
end

Boolean program obtained from SLIC spec.

void example() begin
do {
skipQ);
A:KeAcquireSpinLock return();
skip;
skip;
1T(*) then
skip;
skipQ);

B: KeReleaseSpinLock return();

skip;
1T(*) then
skip;
skip;
else
skip;
skip;
i
skip;
skip;
skip;
ks
} while(™);
skipQ;
C:KeReleaseSpinLock return();
end

Boolean program
obtained from device
driver code

* . undetermined

Model Checking

Find a path that reaches “SLIC ERROR”

In this case, an error path
A, A, SLIC_ERROR

IS found

Verify if the error path is valid with respect to
the original C program

— Verification condition generation (VCGen)
In this case, It Is not valid because the predicate
nPackets==nPacketsOlIld

IS both true and false in the path

Re-abstraction

e Use the predicate
nPackets==nPacketsOld

e The statement nPacketsOld = nPackets
makes the predicate true

e The statement nPackets++ makes the
predicate false If it Is now true (detected by the
theorem prover)

bool choose(pos, neg)
begin
iIT (pos) then return T; elsit (neg) then return F;
elsit (*) then return T; else return F; Ti
end

void example() begin
do {
skipQ);
A:KeAcquireSpinLock return();
b = T;
skip;
1IT(*) then
skip;
skipQ);

B: KeReleaseSpinLock return();

skip;
1T(*) then
skip;
skip;
else
skip;
skip;
Ti
skip;
skip;
b := choose(F,b);
+
} while('b);
skipQ);
C:KeReleaseSpinLock return();
end

Boolean program
obtained by re-
abstraction

b:

nPackets==nPacketsOld

Model Checking Again

* In this case, there iIs no error path that
reaches “SLIC ERROR”

e Loop Invariant :
(state = Locked A nPackets = nPacketsOld)
Vv (state = Unlocked A nPackets # nPacketsOld)

References

—T. Ball, and S. K. Rajamani. Automatically
Validating Temporal Safety Properties of
Interfaces, SPIN, LNCS2057, 2001.

—T. Ball, E. Bounimova, B. Cook, V. Levin, J.
Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static
analysis of device drivers, EuroSys, 2006.

— T. Ball, E. Bounimova, R. Kumar, V. Levin.
SLAMZ2: Static Driver Verification with Under 4%
False Alarms, FMCAD, 2010.

SLAM

SLAMZ2

The Static Driver Verifier Research
Platform

Related project

 Lazy abstraction

http://research.microsoft.com/en-us/projects/slam/�
http://research.microsoft.com/en-us/projects/slam/�
http://mtc.epfl.ch/software-tools/blast/index-epfl.php�
http://mtc.epfl.ch/software-tools/blast/index-epfl.php�

	Basics of Model Checking
	Modal Logic
	Kripke Structure
	Kripke Structure
	Kripke Structure
	Various Kripke Structures
	Modal Formula
	Semantics
	Semantics
	Which holds at ★?
	Which holds at ★?
	Does □Q hold at ★?
	Various Modal Logics
	Satisfiability & Finite-model Property
	Tree-model Property of Modal Logic
	CTL
	Computation Tree Logic
	About Paths
	Semantics
	Which holds at ★?
	Semantics
	Which holds at ★?
	Does AF AG Q hold at ★?
	Computation of State Sets
	Computation of State Sets
	スライド番号 26
	スライド番号 27
	スライド番号 28
	Computation of State Sets
	スライド番号 30
	スライド番号 31
	Computation of State Sets
	スライド番号 33
	スライド番号 34
	スライド番号 35
	Computation of State Sets
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	Summary
	Summary
	Summary
	Modal m-calculus
	Which denotes AFφ?
	Symbolic Model Checking and BDD
	Representation of States
	Example: Peterson’s Algorithm
	Representation of States
	Representation of State Sets
	Representation of Transitions
	スライド番号 52
	Which is true?
	Semantics of Propositional Symbols
	Summing Up…
	Computation of State Sets
	Computation of State Sets
	Quantified Boolean Formulas
	$x((ØxÙy)Ú(xÙØz)) is equivalent to?
	Computation of State Sets
	OBDD
	スライド番号 62
	Advantages of OBDD
	SMV
	LTL
	Linear-time Temporal Logic
	Kripke Structure
	Infinite Sequence of States ---�Execution Path
	Formula
	Semantics
	Which formula holds in this path?
	Does ◇□Q hold?
	Does ◇□P hold?
	Does □◇P hold?
	□◇P
	Expressing Fairness
	□ and ◇ and Ø
	Model Checking in LTL
	Working Example
	Formula (Negation Normal Form)
	Which is the normal form equivalent to Ø□(a É ◇b)?
	□ and ◇ and ○
	cl(j0): the closure of j0
	スライド番号 84
	j0-type
	Selection of j0-types and�Transitions between j0-types
	スライド番号 87
	スライド番号 88
	スライド番号 89
	スライド番号 90
	スライド番号 91
	スライド番号 92
	Which is in a successor of GⅠ?
	スライド番号 94
	スライド番号 95
	スライド番号 96
	What are successors of Ⅰ?
	What are successors of Ⅱ?
	What are successors of Ⅲ?
	スライド番号 100
	スライド番号 101
	スライド番号 102
	スライド番号 103
	Making a “Symbolic” Model
	スライド番号 105
	スライド番号 106
	Conversely …
	w-automaton
	スライド番号 109
	スライド番号 110
	スライド番号 111
	Labels
	スライド番号 113
	スライド番号 114
	スライド番号 115
	Condition on Infinite Paths
	What is F(◇(a Ù □Øb))?
	スライド番号 118
	スライド番号 119
	スライド番号 120
	Model Checking
	Equivalent to the Following
	Example
	Example
	Example
	Synchronous Product
	Synchronous Product
	Synchronous Product
	Which state does not exist?
	Synchronous Product
	Which transition exists?
	Synchronous Product
	Synchronous Product
	Synchronous Product
	Condition for Existence of a Model
	Synchronous Product
	Synchronous Product
	Condition on a Loop
	Report
	Report¢
	until
	release
	until and release and Ø
	until and release and ○
	SPIN
	Bounded Model Checking and SAT/SMT
	Bounded Model Checking
	Bounded Paths
	Bounded Semantics
	Theorem
	Theorem
	Translation to SAT
	Translation for a (k,l)-loop
	Introduction of New Variables
	Example
	SAT (Satisfiability)
	SAT Solvers
	SMT (Satisfiability Modulo Theories)
	Examples of Theories
	Nelson-Oppen
	Abstract Model Checking and CEGAR
	Abstraction
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Alternating Bit Protocol
	Concrete States
	Abstraction of Channels
	スライド番号 198
	Abstract States
	Simulation
	Simulation
	Simulation
	Abstract Model Checking
	Alternating Bit Protocol
	Microsoft Static Driver Verifier (SDV)
	SLAM Toolkit
	CEGAR
	スライド番号 208
	スライド番号 209
	スライド番号 210
	スライド番号 211
	スライド番号 212
	スライド番号 213
	スライド番号 214
	Model Checking
	Re-abstraction
	スライド番号 217
	Model Checking Again
	References
	SLAM

